Improved Upper Bound on the Network Function Computing Capacity
نویسندگان
چکیده
The problem of network function computation over a directed acyclic network is investigated in this paper. In such a network, a sink node desires to compute with zero error a target function, of which the inputs are generated at multiple source nodes. The edges in the network are assumed to be error-free and have limited capacity. The nodes in the network are assumed to have unbounded computing capability and be able to perform network coding. The computing rate of a network code that can compute the target function over the network is the average number of times that the target function is computed with zero error for one use of the network. In this paper, we obtain an improved upper bound on the computing capacity, which is applicable to arbitrary target functions and arbitrary network topologies. This improved upper bound not only is an enhancement of the previous upper bounds but also is the first tight upper bound on the computing capacity for computing an arithmetic sum over a certain non-tree network, which has been widely studied in the literature. We also introduce a multi-dimensional array approach that facilitates evaluation of the improved upper bound. Furthermore, we apply this bound to the problem of computing a vector-linear function over a network. With this bound, we are able to not only enhance a previous result on computing a vector-linear function over a network but also simplify the proof significantly. Finally, we prove that for computing the binary maximum function over the reverse butterfly network, our improved upper bound is not achievable. This result establishes that in general our improved upper bound is non achievable, but whether it is asymptotically achievable or not remains open.
منابع مشابه
A New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کاملA New Lower Bound for Completion Time Distribution Function of Stochastic PERT Networks
In this paper, a new method for developing a lower bound on exact completion time distribution function of stochastic PERT networks is provided that is based on simplifying the structure of this type of network. The designed mechanism simplifies network structure by arc duplication so that network distribution function can be calculated only with convolution and multiplication. The selection of...
متن کاملJoint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks
Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...
متن کاملComparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels
Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...
متن کاملAsymptotic algorithm for computing the sample variance of interval data
The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.02252 شماره
صفحات -
تاریخ انتشار 2017